
# BL 1608 Series Multilayer Chip Baluns

### **Features**

- ❖ Monolithic SMD with small, low-profile and light-weight type.
- ❖RoHS compliant

### **Applications**

•0.6 ~ 6 GHz wireless communication systems, including DECT/PACS/PHS/GSM/DCS phones, WLAN card, Bluetooth modules, Hyper-LAN, etc.



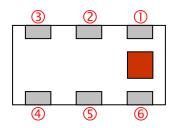
### **Specifications**

| Part Number           | Frequency<br>Range<br>(MHz) | Unbalanced<br>Impedance<br>(ohm) | Balanced<br>Impedance<br>(ohm) | Insertion Loss<br>(dB)                                           | VSWR<br>@BW           |          | Amplitude<br>Difference<br>(dB) |
|-----------------------|-----------------------------|----------------------------------|--------------------------------|------------------------------------------------------------------|-----------------------|----------|---------------------------------|
| BL1608-<br>10V4600KB_ | 3200 ~<br>6000              | 50                               | 100                            | 0.7typ. / 1.2 max.<br>@-40~85°C<br>1.05 typ. / 1.4 max<br>@105°C | 1.7typ.<br>/ 2.3 max. | 180 ± 15 | 2.0<br>max.                     |

Q'ty/Reel (pcs) : 4000

Operating Temperature Range :  $-40 \sim +105^{\circ}$ C Storage Temperature Range :  $-40 \sim +105^{\circ}$ C Storage Period : 12 months max. Power Capacity : 1W max.

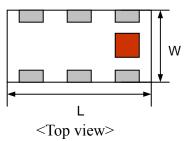
### **Part Number**

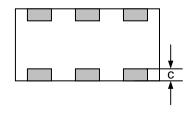

BL 1608 - 10 V 4600 KB □ /LF

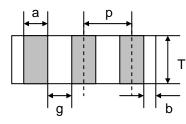
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

| ① Туре                                                                   | BL : Balun     | ② Dimensions ( L × W ) | 1.6 × 0.8 mm  |  |
|--------------------------------------------------------------------------|----------------|------------------------|---------------|--|
| 3 Balanced Impedance                                                     | 10 : 100 ohm   | Material Code          | V             |  |
| © Central Frequency                                                      | 4600 : 4600MHz | 6 Specification Code   | КВ            |  |
| <ul><li>7 Packaging</li><li>T: Tape &amp; Reel</li><li>B: Bulk</li></ul> |                | Soldering              | /LF=lead-free |  |




# **Terminal Configuration**

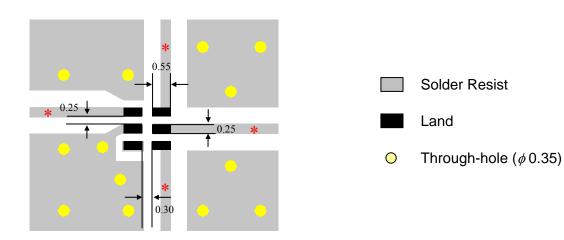




| No. | Terminal Name    | No. | Terminal Name |  |
|-----|------------------|-----|---------------|--|
| 1   | Unbalanced Port  | 4   | Balanced Port |  |
| 2   | GND or           | (5) | GND           |  |
| (Z) | DC feed + RF GND | )   | GND           |  |
| 3   | Balanced Port    | 6   | NC            |  |

### **Dimensions and Recommended PC Board Pattern**

Unit: mm



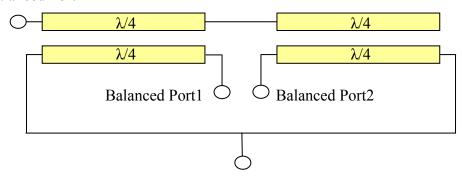





<Bottom view>

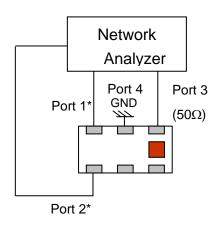
<Side view>

| Mark         | L     | W     | Т    | а     | b    | С      | g     | р      |
|--------------|-------|-------|------|-------|------|--------|-------|--------|
| Dimensions   | 1.6 ± | 0.8 ± | 0.6± | 0.2 ± | 0.2± | 0.15 ± | 0.3 ± | 0.50 ± |
| Dilliensions | 0.1   | 0.1   | 0.1  | 0.1   | 0.15 | 0.1    | 0.1   | 0.05   |




 $<sup>^{\</sup>star}$  Line width should be designed to match  $50\Omega$  characteristic impedance, depending on PCB material and thickness.




### **Equivalent Circuit**

### **Unbalanced Port**



Pin2(GND or DC feed + RF GND)

### **Measuring Diagram**



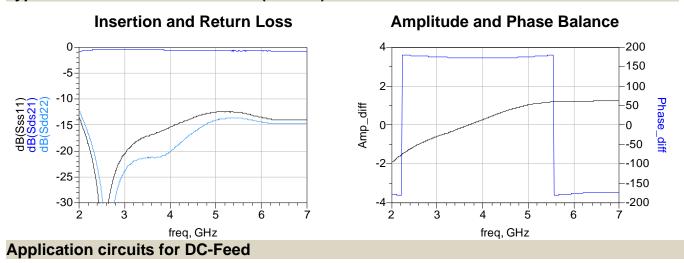
Port 3:Unbalanced Port

Ports 1 and 2: Balanced Port

Ports 4: GND or DC feed + RF GND

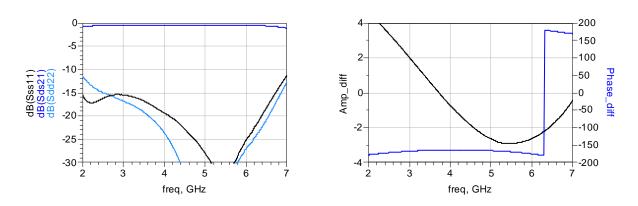
IL=S<sub>ds21</sub>

RL=S<sub>ss11</sub>


 $Amp\_balance = dB(S(1,3)/S(2,3))$ 

Phase\_balance = Phase(S(1,3)/S(2,3))

\*Impedance for ports 1 and 2 = Balanced Impedance/2



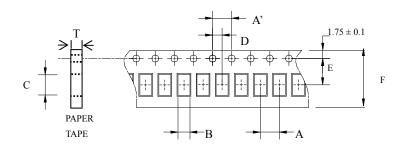

### Typical Electrical Characteristics (T=25°C)



# With DC feed Through-hole should be placed to capacitor as close as possible. \*\*By-pass capacitor is recommended as 47pF (Chip Size: 0402) Solder Resist Land Through-hole (\$\phi\$ 0.3)

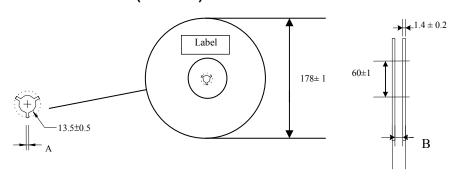
- \*Line width should be designed to match  $50\Omega$  characteristic impedance, depending on PCB material and thickness.
- \*\* By-pass capacitor should be connected when feeding DC power. The behavior of the by-pass capacitor operating at RF frequency is the electrically short to GND, when the by-pass capacitor is enough big. In generally, the better grounding is along with the better imbalance. Hence, the by-pass capacitor should be placed to the pin2 of balun as close as possible. In real case, the imbalance depends on the grounding effect of the by-pass capacitor. The following graph is the measurement result with the by-pass capacitor, the imbalance is worse than that without by-pass capacitor, and is out of spec slightly.




### Notes

The contents of this data sheet are subject to change without notice. Please confirm the specifications and delivery conditions when placing your order.

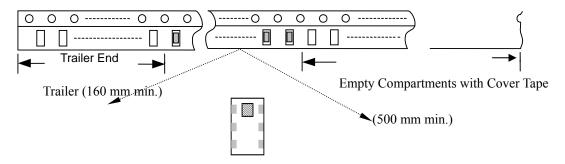



### **Taping Specifications**

### **❖Tape Dimensions (Unit: mm) & Quantity**

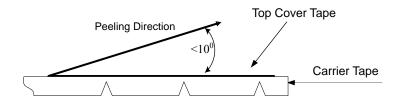


| Туре | Α    | A'   | В     | С     | D    | E    | F    | Т     | Quantity/reel | Tape material |
|------|------|------|-------|-------|------|------|------|-------|---------------|---------------|
| 1608 | 4.0± | 4.0± | 1.10± | 1.92± | 2.0± | 3.5± | 8.0± | 0.75± | 4,000pcs      | Paper         |
| 1000 | 0.1  | 0.1  | 0.1   | 0.1   | 0.1  | 0.1  | 0.1  | 0.05  | 4,000pcs      | гареі         |


### **❖Reel Dimensions (Unit: mm)**



Label: Customer's Name,
ACX P/N, Q'ty, Date,
ACX Corp.


| Туре | Α       | В       |  |
|------|---------|---------|--|
| 1608 | 2.3±0.5 | 9.0±0.3 |  |

### ❖Leader and Trailer Tape





### **❖Peel-off Force**



Peel-off force should be in the range of 0.1-0.6~N at a peel-off speed of  $300\pm10~mm/min$  .

### **❖Storage Conditions**

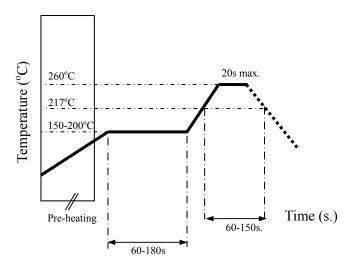
- (1) Temperature: 5 ~35°C, relative humidity (RH): 45~75%.
- (2) Non-corrosive environment.

### **Notes**

The contents of this data sheet are subject to change without notice. Please confirm the specifications and delivery conditions when placing your order.



# **Mechanical & Environmental Characteristics**


| Item                                                       | Requirements                                                                                                                                     | Procedure                                                                                                                                                                                                                                                              |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solderability  Soldering strength  (Termination  Adhesion) | <ol> <li>No apparent damage</li> <li>More than 95% of the terminal electrode shall be covered with new solder</li> <li>1. 10N minimum</li> </ol> | <ol> <li>Preheat: 120± 5 °C</li> <li>Solder: 245± 5°C for 5± 1 sec</li> <li>Solder specimen onto test jig.</li> <li>Apply push force at 0.5mm/s until electrode pads are peeled off or ceramic are broken. Pushing force is applied to longitude direction.</li> </ol> |
| Deflection<br>(Substrate Bending)                          | No apparent damage     Fulfill the electrical specification                                                                                      | <ol> <li>Solder specimen onto test jig (FR4, 1.6mm) using the recommend soldering profile.</li> <li>Apply a bending force of 2mm deflection.</li> </ol> Pressure Rod 90mm                                                                                              |
| Heat/Humidity<br>Resistance                                | No apparent damage     Fulfill the electrical specification after test                                                                           | <ol> <li>Temperature: 85± 2°C</li> <li>Humidity: 90% ~ 95% RH</li> <li>Duration: 1000±48hrs</li> <li>Recovery: 1-2hrs</li> </ol>                                                                                                                                       |
| Thermal shock<br>(Temperature Cycle)                       | No apparent damage     Fulfill the electrical specification     after test                                                                       | <ol> <li>One cycle/step 1 : 125 ± 5°C for 30 min step 2 : - 40 ± 5°C for 30 min</li> <li>No of cycles : 100</li> <li>Recovery:1-2 hrs</li> </ol>                                                                                                                       |
| Low Temperature<br>Resistance                              | <ol> <li>No apparent damage</li> <li>Fulfill the electrical specification<br/>after test</li> </ol>                                              | <ol> <li>Temperature: -40± 5 °C</li> <li>Duration: 500 ±24hrs</li> <li>Recovery: 1-2hrs</li> </ol>                                                                                                                                                                     |



### **Soldering Conditions**

**❖**Typical Soldering Profile for Lead-free Process

Reflow Soldering:



### **Notes**

The contents of this data sheet are subject to change without notice. Please confirm the specifications and delivery conditions when placing your order.

### **Advanced Ceramic X Corp.**

16 Tzu Chiang Road, Hsinchu Industrial District Hsinchu Hsien 303, Taiwan TEL:886-3-5987008 FAX:886-3-5987001

E-mail: <a href="mailto:acx@acxc.com.tw">acx@acxc.com.tw</a>
http://www.acxc.com.tw